UAM AAM Human Factors Issues

Jay Shively

NASA-Ames Research Center

Advanced Air Mobility (AAM) formerly known as Urban Air Mobility (UAM)

- Low-altitude
- Vertical flight
- Very high-density operations
- New electric or hybrid vehicles
- Highly automated

Analogous to Helicopter Flights/taxi

- Vertical take-off and landing
- Low altitude
- VFR
 - No ATC separation
- Obstacles
- Terrain
- Weather

Helicopter accident rates

Year	Total accident rate per 100,000 flight hours	Fatal accident rate per 100,000 flight hours
2018	3.62	0.72
2017	3.7	0.6
2016	3.48	0.54
2015	3.67	0.52

Commercial airline suffer one fatal accident for every 3 million flights.

https://qz.com/1791791/helicopter-crashes-like-kobe-bryants-have-become-more-common/

Massive increase in number of flights

According to recent NASA-commissioned market studies, by 2030 as many as 500 million flights a year for package delivery services and 750 million flights a year for air metro services.

2018 Helo accident rates @ 500 Million flights – 3,600 Fatal Accidents per year

Roughly TEN PER DAY !!!

New Vehicles

- vTOL
- Electric
- Hybrid
- Multi-rotor

*Below 10 years of operation, the moving average is based on the number of years of operation.

"Potential" Issues?

- Take high risk environment with a demonstrated poor safety record.
- Increase the rate of flights dramatically.
- Fly with all new vehicles.

What could go wrong?

Automation !!

- 1. Remove pilot Automate completely
- 2. Remote pilot RPAS
- 3. Pilot on board simplified vehicle operations

Problems with Automation

- Automation for automation's sake
 - Lack of underlieing methodology/process
- Brittleness
- Mode Awareness
- Trust (over/under)
- Automation paradox

Automation Paradox

- The *Paradox of Automation* says that the more efficient the automated system, the more crucial the human contribution of the operators. Humans are less involved, but their involvement becomes more critical.
- If an automated system has an error, it will multiply that error until it's fixed or shut down. This is where human operators come in.
- Efficient Automation makes humans more important, not less.

Human Autonomy Teaming

- Analysis of future issues/gaps/barriers not current for general aviation or helicopters
- Intelligently determine what should be automated to help the human (not what can be automated to help throughput)
- Implement automation smartly HAT
- SVO with experienced highly-trained pilots

HAT Model

Automation Design "Checklist"

- Stakeholders
- Tech readiness
 - Automation failure rates
- Why
 - Workload
 - Scalability
 - Training
- Transparency
- Two-way communication
- Clear operating modes
- Reversion modes (for the inevitable automation failure)
- Operational envelope
- Enunciation

Automation Operation "Checklist"

- Inherit all of design questions:
- Do users know what it does, when and why?
- Does the user (and other stakeholders) trust the automation appropriately?
- Failure rates match design?
- Unintended uses/issues?
- Does it address design goal?

Can revolutionize aviation! (or not)

Must be implemented intelligently

Human Autonomy Teaming is critical